Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Biosensors and Bioelectronics: X ; 12, 2022.
Article in English | EMBASE | ID: covidwho-2246489

ABSTRACT

There seems to be a growing curiosity for utilizing MIPs to recognize molecules that can be applied in numerous fields, such as biomimetic antibodies, detection of viruses and bacteria, the broad range of sensing devices, etc., owing to its scalability and economic viability. MIPs have higher thermal and chemical stability, delivering a promising potential for recognizing bacteria and viruses. The bacteria and virus imprinted polymer exhibit elongated product life-time, reproducible fabrication, robustness, reusability, sensitivity, and high target selectivity. Moreover, the MIPs could give consistent screening along with negligible false positive/negative outcomes, which is vital for the control and prevention of viral and bacterial infections. In the viral and bacterial imprinting process, critical aspects, such as compositional complexity, fragility, solubility, and target size, should be systematically evaluated and analytically considered. Although, the application of MIPs has a number of drawbacks and challenges that require solving to develop sensing platforms with high specificity and sensitivity for clinical application. In the present review, current progress and advancement regarding the reasoning and applications of MIPs as recognition molecules in various biosensors for detecting bacteria and viruses and its existing noteworthy challenges along with future perspectives are also reflected.

2.
Talanta ; 253:N.PAG-N.PAG, 2023.
Article in English | Academic Search Complete | ID: covidwho-2234760

ABSTRACT

The SARS-CoV-2 spike glycoprotein (SARS-CoV-2-S) was used as a template molecule and polypyrrole (Ppy) was applied as an electro-generated conducting polymer, which was acting as a matrix for the formation of molecular imprints. Two types of Ppy-layers: molecularly imprinted polypyrrole (MIP-Ppy) and non-imprinted polypyrrole (NIP-Ppy) were electrochemically deposited on the working platinum electrode. The performance of electrodes modified by MIP-Ppy and NIP-Ppy layers was evaluated by pulsed amperometric detection (PAD). During the assessment of measurement results registered by PAD, the integrated Cottrell equation (Anson plot) was used to calculate the amount of charge passed through the MIP-Ppy and NIP-Ppy layers. The interaction between SARS-CoV-2 spike glycoproteins and molecularly imprinted polypyrrole (MIP-Ppy) was assessed by the Anson plot based calculations. This assessment reveals that SARS-CoV-2-S glycoproteins are interacting with MIP-Ppy more strongly than with NIP-Ppy. [Display omitted] • The SARS-CoV-2 spike glycoprotein (SARS-CoV-2-S) was molecularly imprinted within polypyrrole (Ppy). • Molecularly imprinted polypyrrole (MIP-Ppy) and non-imprinted polypyrrole (NIP-Ppy) were electro-deposited on Pt electrode. • Performance of electrodes modified by MIP-Ppy and NIP-Ppy was evaluated by pulsed amperometric detection (PAD). • Cottrell equation (Anson plot) was applied for the calculation of passed charge. • Interaction between SARS-CoV-2 protein and MIP-Ppy and NIP-Ppy was evaluated using Anson plot. [ FROM AUTHOR]

3.
15th Textile Bioengineering and Informatics Symposium, TBIS 2022 ; : 47-51, 2022.
Article in English | Scopus | ID: covidwho-2125394

ABSTRACT

The COVID-19 outbreak has led to the overproduction of meltblown fabrics commonly used in personal protective equipment such as face mask. Moreover, the yield ofconventional fabrication methods for meltblown fabrics have poor mechanical properties and lack accessional value and functional applicability. In this study, a short and highly efficient process was employed to produce polypropylene/polypyrrole (PPy) meltblown nanoyarn (PPMNY). The mechanical properties were improved by utilizing a helical structure, and the conductivity was enabled using a combination of PPy nanoparticles. The breaking force of the proposed PPMNY was as high as 10.1cN/tex at 9T/10 cm, nearly 3.3 times more than PPMNY without the helical structure. The breaking force of the proposed PPMNY was unaffected by the washing process, and the frictional properties and snarling information were similarly maintained by the helical structure. Additionally, the optimal conductivity of the proposed PPMNY reached 0.044S·m-1. Therefore, the novel methods investigated in this study can improve the properties of meltblown fabrics to yield a highly efficient and low-cost technique to produce conductive PPMNY. This concept can be extended for solving the problems of the single two-dimensional structure with poor mechanical properties and application on Smart Wearable with preferable conductivity. © Textile Bioengineering and Informatics Symposium Proceedings 2022 - 15th Textile Bioengineering and Informatics Symposium, TBIS 2022.

4.
Sep Purif Technol ; 306: 122643, 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2132354

ABSTRACT

The global mask consumption has been exacerbated because of the coronavirus disease 2019 (COVID-19) pandemic. Simultaneously, the traditional mask disposal methods (incineration and landfill) have caused serious environmental pollution and waste of resources. Herein, a simple and green mass-production method has been proposed to recycle carbon protective mask (CPM) into the carbon protective mask/polydopamine/polypyrrole (CPM/PDA/PPy) composite by in situ polymerization of PPy. The CPM/PDA/PPy composite was used for the removal of Cr(VI) and salt ions to produce clean water. The synergistic effect of PPy and the CPM improved the removal capability of Cr(VI). The CPM/PDA/PPy composite provided high adsorption capacity (358.68 mg g-1) and economic value (811.42 mg $-1). Consequently, the CPM/PDA/PPy (cathode) was combined with MnO2 (anode) for desalination in CDI cells, demonstrated excellent desalination capacity (26.65 mg g-1) and ultrafast salt adsorption rate (6.96 mg g-1 min-1), which was higher than conventional CDI cells. Our work proposes a new low-carbon strategy to recycle discarded masks and demonstrates their utilization in Cr(VI) removal and seawater desalination.

5.
Talanta ; : 123981, 2022.
Article in English | ScienceDirect | ID: covidwho-2061903

ABSTRACT

The SARS-CoV-2 spike glycoprotein (SARS-CoV-2-S) was used as a template molecule and polypyrrole (Ppy) was applied as an electro-generated conducting polymer, which was acting as a matrix for the formation of molecular imprints. Two types of Ppy-layers: molecularly imprinted polypyrrole (MIP-Ppy) and non-imprinted polypyrrole (NIP-Ppy) were electrochemically deposited on the working platinum electrode. The performance of electrodes modified by MIP-Ppy and NIP-Ppy layers was evaluated by pulsed amperometric detection (PAD). During the assessment of measurement results registered by PAD, the integrated Cottrell equation (Anson plot) was used to calculate the amount of charge passed through the MIP-Ppy and NIP-Ppy layers. The interaction between SARS-CoV-2 spike glycoproteins and molecularly imprinted polypyrrole (MIP-Ppy) was assessed by the Anson plot based calculations. This assessment reveals that SARS-CoV-2-S glycoproteins are interacting with MIP-Ppy more strongly than with NIP-Ppy.

6.
Chemosensors ; 10(5):180, 2022.
Article in English | ProQuest Central | ID: covidwho-1870853

ABSTRACT

This paper reports the results obtained from the determination of ascorbic acid with platinum-based voltammetric sensors modified with potassium hexacyanoferrate-doped polypyrrole. The preparation of the modified electrodes was carried out by electrochemical polymerization of pyrrole from aqueous solutions, using chronoamperometry. Polypyrrole films were deposited on the surface of the platinum electrode, by applying a constant potential of 0.8 V for 30 s. The thickness of the polymer film was calculated from the chronoamperometric data, and the value was 0.163 μm. Cyclic voltammetry was the method used for the Pt/PPy-FeCN electrode electrochemical characterization in several types of solution, including KCl, potassium ferrocyanide, and ascorbic acid. The thin doped polymer layer showed excellent sensitivity for ascorbic acid detection. From the voltammetric studies carried out in solutions of different concentrations of ascorbic acid, ranging from 1 to 100 × 10−6 M, a detection limit of 2.5 × 10−7 M was obtained. Validation of the analyses was performed using pharmaceutical products with different concentrations of ascorbic acid, from different manufacturers and presented in various pharmaceutical forms, i.e., intravascular administration ampoules, chewable tablets, and powder for oral suspension.

7.
Electrochim Acta ; 403: 139581, 2022 Jan 20.
Article in English | MEDLINE | ID: covidwho-1796883

ABSTRACT

This study describes the application of a polypyrrole-based sensor for the determination of SARS-CoV-2-S spike glycoprotein. The SARS-CoV-2-S spike glycoprotein is a spike protein of the coronavirus SARS-CoV-2 that recently caused the worldwide spread of COVID-19 disease. This study is dedicated to the development of an electrochemical determination method based on the application of molecularly imprinted polymer technology. The electrochemical sensor was designed by molecular imprinting of polypyrrole (Ppy) with SARS-CoV-2-S spike glycoprotein (MIP-Ppy). The electrochemical sensors with MIP-Ppy and with polypyrrole without imprints (NIP-Ppy) layers were electrochemically deposited on a platinum electrode surface by a sequence of potential pulses. The performance of polymer layers was evaluated by pulsed amperometric detection. According to the obtained results, a sensor based on MIP-Ppy is more sensitive to the SARS-CoV-2-S spike glycoprotein than a sensor based on NIP-Ppy. Also, the results demonstrate that the MIP-Ppy layer is more selectively interacting with SARS-CoV-2-S glycoprotein than with bovine serum albumin. This proves that molecularly imprinted MIP-Ppy-based sensors can be applied for the detection of SARS-CoV-2 virus proteins.

8.
Mater Today Chem ; 24: 100817, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1796291

ABSTRACT

The rapid and reliable detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroconversion in humans is crucial for suitable infection control. In this sense, many studies have focused on increasing the sensibility, lowering the detection limits and minimizing false negative/positive results. Thus, biosensors based on nanoarchitectures of conducting polymers are promising alternatives to more traditional materials since they can hold improved surface area, higher electrical conductivity and electrochemical activity. In this work, we reported the analytical comparison of two different conducting polymers morphologies for the development of an impedimetric biosensor to monitor SARS-CoV-2 seroconversion in humans. Biosensors based on polypyrrole (PPy), synthesized in both globular and nanotubular (NT) morphology, and gold nanoparticles are reported, using a self-assembly monolayer of 3-mercaptopropionic acid and covalently linked SARS-CoV-2 Nucleocapsid protein. First, the novel hybrid materials were characterized by electron microscopy and electrochemical measurements, and the biosensor step-by-step construction was characterized by electrochemical and spectroscopic techniques. As a proof of concept, the biosensor was used for the impedimetric detection of anti-SARS-CoV-2 Nucleocapsid protein monoclonal antibodies. The results showed a linear response for different antibody concentrations, good sensibility and possibility to quantify 7.442 and 0.4 ng/mL of monoclonal antibody for PPy in the globular and NT morphology, respectively. The PPy-NTs biosensor was able to discriminate serum obtained from COVID-19 positive versus negative clinical samples and is a promising tool for COVID-19 immunodiagnostic, which can contribute to further studies concerning rapid, efficient, and reliable detections.

9.
Appl Mater Today ; 27: 101473, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1777973

ABSTRACT

The pandemic of the coronavirus disease 2019 (COVID-19) has made biotextiles, including face masks and protective clothing, quite familiar in our daily lives. Biotextiles are one broad category of textile products that are beyond our imagination. Currently, biotextiles have been routinely utilized in various biomedical fields, like daily protection, wound healing, tissue regeneration, drug delivery, and sensing, to improve the health and medical conditions of individuals. However, these biotextiles are commonly manufactured with fibers with diameters on the micrometer scale (> 10 µm). Recently, nanofibrous materials have aroused extensive attention in the fields of fiber science and textile engineering because the fibers with nanoscale diameters exhibited obviously superior performances, such as size and surface/interface effects as well as optical, electrical, mechanical, and biological properties, compared to microfibers. A combination of innovative electrospinning techniques and traditional textile-forming strategies opens a new window for the generation of nanofibrous biotextiles to renew and update traditional microfibrous biotextiles. In the last two decades, the conventional electrospinning device has been widely modified to generate nanofiber yarns (NYs) with the fiber diameters less than 1000 nm. The electrospun NYs can be further employed as the primary processing unit for manufacturing a new generation of nano-textiles using various textile-forming strategies. In this review, starting from the basic information of conventional electrospinning techniques, we summarize the innovative electrospinning strategies for NY fabrication and critically discuss their advantages and limitations. This review further covers the progress in the construction of electrospun NY-based nanotextiles and their recent applications in biomedical fields, mainly including surgical sutures, various scaffolds and implants for tissue engineering, smart wearable bioelectronics, and their current and potential applications in the COVID-19 pandemic. At the end, this review highlights and identifies the future needs and opportunities of electrospun NYs and NY-based nanotextiles for clinical use.

10.
J Pharm Biomed Anal ; 206: 114392, 2021 Nov 30.
Article in English | MEDLINE | ID: covidwho-1433569

ABSTRACT

The projection of new biosensing technologies for genetic identification of SARS-COV-2 is essential in the face of a pandemic scenario. For this reason, the current research aims to develop a label-free flexible biodevice applicable to COVID-19. A nanostructured platform made of polypyrrole (PPy) and gold nanoparticles (GNP) was designed for interfacing the electrochemical signal in miniaturized electrodes of tin-doped indium oxide (ITO). Oligonucleotide primer was chemically immobilized on the flexible transducers for the biorecognition of the nucleocapsid protein (N) gene. Methodological protocols based on cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM) were used to characterize the nanotechnological apparatus. The biosensor's electrochemical performance was evaluated using the SARS-CoV-2 genome and biological samples of cDNA from patients infected with retrovirus at various disease stages. It is inferred that the analytical tool was able to distinguish the expression of SARS-CoV-2 in patients diagnosed with COVID-19 in the early, intermediate and late stages. The biosensor exhibited high selectivity by not recognizing the biological target in samples from patients not infected with SARS-CoV-2. The proposed sensor obtained a linear response range estimated from 800 to 4000 copies µL-1 with a regression coefficient of 0.99, and a detection limit of 258.01 copies µL-1. Therefore, the electrochemical biosensor based on flexible electrode technology represents a promising trend for sensitive molecular analysis of etiologic agent with fast and simple operationalization. In addition to early genetic diagnosis, the biomolecular assay may help to monitor the progression of COVID-19 infection in a novel manner.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Antibodies, Immobilized , Electrochemical Techniques , Electrodes , Gold , Humans , Limit of Detection , Microelectrodes , Polymers , Pyrroles , SARS-CoV-2
11.
Nanomaterials (Basel) ; 11(8)2021 Aug 03.
Article in English | MEDLINE | ID: covidwho-1376917

ABSTRACT

Polypyrrole (PPy) nanoparticles (NPs) are used for the coating of materials, such as textiles, with biomedical applications, including wound care and tissue engineering, but they are also promising antibacterial agents. In this work, PPy NPs were used for the spray-coating of textiles with antimicrobial properties. The functional properties of the materials were verified, and their safety was evaluated. Two main exposure scenarios for humans were identified: inhalation of PPy NPs during spray (manufacturing) and direct skin contact with NPs-coated fabrics (use). Thus, the toxicity properties of PPy NPs and PPy-coated textiles were assessed by using in vitro models representative of the lung and the skin. The results from the materials' characterization showed the stability of both the PPy NP suspension and the textile coating, even after washing cycles and extraction in artificial sweat. Data from an in vitro model of the air-blood barrier showed the low toxicity of these NPs, with no alteration of cell viability and functionality observed. The skin toxicity of PPy NPs and the coated textiles was assessed on a reconstructed human epidermis model following OECD 431 and 439 guidelines. PPy NPs proved to be non-corrosive at the tested conditions, as well as non-irritant after extraction in artificial sweat at two different pH conditions. The obtained data suggest that PPy NPs are safe NMs in applications for textile coating.

12.
Int J Mol Sci ; 22(14)2021 Jul 14.
Article in English | MEDLINE | ID: covidwho-1323261

ABSTRACT

Good health, of vital importance in order to carry out our daily routine, consists of both physical and mental health. Tyrosine (Tyr) deficiency as well as its excess are issues that can affect mental health and can generate disorders such as depression, anxiety, or stress. Tyr is the amino acid (AA) responsible for maintaining good mental health, and for this reason, the present research presents the development of new electrochemical sensors modified with polypyrrole (PPy) doped with different doping agents such as potassium hexacyanoferrate (II) (FeCN), sodium nitroprusside (NP), and sodium dodecyl sulfate (SDS) for a selective and sensitive detection of Tyr. The development of the sensors was carried out by chronoamperometry (CA) and the electrochemical characterization was carried out by cyclic voltammetry (CV). The detection limits (LOD) obtained with each modified sensor were 8.2 × 10-8 M in the case of PPy /FeCN-SPCE, 4.3 × 10-7 M in the case of PPy/NP-SPCE, and of 3.51 × 10-7 M in the case of PPy/SDS-SPCE, thus demonstrating a good sensitivity of these sensors detecting L-Tyr. The validation of sensors was carried out through quantification of L-Tyr from three pharmaceutical products by the standard addition method with recoveries in the range 99.92-103.97%. Thus, the sensors present adequate selectivity and can be used in the pharmaceutical and medical fields.


Subject(s)
Carbon/chemistry , Electrodes , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry , Polymers/chemistry , Pyrroles/chemistry , Tyrosine/analysis , Electrochemical Techniques
SELECTION OF CITATIONS
SEARCH DETAIL